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Abstract

A military arms race is characterized by an iterative development of measures and countermea-

sures. An attacker attempts to introduce new weapons in order to gain some advantage, whereas

a defender attempts to develop countermeasures that can mitigate or even eliminate the effects of

the weapons. This paper addresses the defender’s decision problem: given limited resources, which

countermeasures should be developed and how much should be invested in their development so

as to minimize the damage caused by the attacker’s weapons over a certain time horizon. We for-

mulate several optimization models, corresponding to different operational settings, as constrained

shortest path problems and variants thereof. We then demonstrate the potential applicability and

robustness of this approach with respect to various scenarios.
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1 Introduction

The term arms race is typically used to describe military buildup efforts by countries that are in

conflict with one another (e.g., US vs. the USSR during the cold war era, India vs. Pakistan,

Greece vs. Turkey, etc). Studies of such phenomena typically address strategic issues and are

commonly found in the political, economics and strategic planning literature – see, for example,

the recent study of military technology races in [12]. In contrast, the present paper addresses

operational aspects that arise in arms races. In particular, it focuses on how much resources should

be invested by a defender in such a race and how to time these investments. We consider an arms

race between two asymmetric parties: Red (R) and Blue (B). R is the attacker, who is trying to

develop an assortment of new weapons to attack the defender B. Being aware of R’s capabilities,

intentions and activities, B is trying to develop countermeasures (CMs) that will mitigate, or even

neutralize, the effects of R’s weapons. The CMs may be technological, tactical, or both.

If R completes the development of a certain weapon and makes it operational before B is ready

with appropriate CMs, then R inflicts a certain damage on B (typically measured in casualties and

economic damages) per each time-unit until an appropriate CM becomes operational. If B wins

the race and a CM is operational before R deploys a weapon, then the damage to B is smaller

when that weapon becomes available. If B’s CMs are perfectly effective against that weapon (see

[5]), the damage to B can be as low as zero. Given a set of existing and potential weapons to be

deployed by R, the problem that B faces is how to utilize its limited resources to develop the most

effective mix of CMs – a mix that minimizes total damage.

An example of the settings addressed in this paper is the counterinsurgency warfare faced

by coalition forces in Iraq and Afghanistan (2003-2009) where the insurgents develop and deploy

new types of improvised explosive devices (IED), with ever increasing lethal capability, while the

coalition forces continue to develop technologies, tactics, techniques and procedures to respond to

that threat (see, e.g., [14], [16], [17]).

Arms race problems are related to a broader class of problems addressing investment rates

in R&D projects that are carried out in competitive market environments (see, e.g., [9], [11] and

[15]). Most of the articles that have appeared in this literature have assumed the “winner-takes-all”

hypothesis whereby the first party that achieves an advantage maintains it indefinitely and all other

parties lose.

In a recent paper, Golany et al. [8] analyze a stochastic version of the arms race problem of

the kind described above. In contrast with the common “winner-takes-all” assumption, the models
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presented in [8] address situations in which any advantage gained by one of the parties partici-

pating in the race is temporary in nature and is lost once another party overtakes the lead. Two

types of models are presented in [8]: optimization models that derive optimal resource allocation

schemes, and game-theoretic models that derive Nash-equilibrium solutions. Specifically, resources

invested by B in developing CMs determine, probabilistically, the time when these CMs are ready

and operational, and thus also determine the expected damage caused to B by R. Assuming a

predetermined development policy of CMs – in parallel or sequentially – corresponding convex

programming problems are formulated and solution methods are discussed.

The stochastic models in [8] enable B to determine optimal investment schemes while capturing

uncertain durations of R&D activities and limited intelligence about R’s capabilities. The approach

taken in this paper is quite different as we focus on developing deterministic models to address B’s

resource allocation problems. The deterministic approach is justified in settings where (1) the CM

development efforts do not involve a significant research element and are mainly composed of a

sequence of engineering stages whose durations can be forecasted with reasonable accuracy and

(2) when there are reliable intelligence reports regarding R’s capabilities, intentions and possible

hostile actions.

The main contribution of this paper is in extending the operational situation described in [8] in

three ways: (a) assuming arbitrary CM development policies (not necessarily parallel or sequential);

(b) introducing temporal budget constraints, which are quite realistic in defense contracting; (c)

allowing for a wide variety of “inconsistent” CMs in the sense that a certain CM may be more

effective against weapon I than weapon II, while the reverse is true for another CM. Also, unlike

the continuous investment levels considered in [8], the formulation presented herein restricts the

investment levels to a finite number of discrete values. Similar discretization was implemented by

[2] to analyze investment levels among alternative projects related to the natural gas industry in

the US.

We model the decision problem of B as a variant of a resource-constrained shortest path (RCSP)

problem, where the constraints capture global or temporal budgetary constraints. The RCSP

problem is known to be NP-complete, in the ordinary sense – see [6], and we show that our variant

is also NP-complete. RCSP problems have been addressed by many authors including [1], [4],

[10] and [13]. In particular, RCSP problems of limited size can be solved through special-purpose

algorithms such as those developed in [3] and [7], or through efficient general-purpose algorithms

available in commercial optimization software packages.
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To demonstrate the potential usefulness of our RCSP models and analyze their robustness to

small data perturbations we conducted an extensive computational study in which we employed

the solver in the MOSEK optimization package. This solver was proven to be quite efficient for

realistically sized problem instances of our RCSP models.

The rest of the paper is organized as follows. In Section 2 we introduce notation and state

the decision problem formally. In Section 3 and 4 we formulate several variants of the problem,

addressing single and multiple weapons and CMs, as constrained network optimization models.

Section 5 demonstrates the usefulness of the models by presenting the results of extensive numerical

experiments. Finally, Section 6 suggests some directions for future research.

2 Problem Formulation

The weapons that R develops are indexed by w ∈ W = {1, . . . , |W|}. For each w, let sw denote the

time when weapon w becomes operational; the sw’s are obtained or estimated by B’s intelligence

agencies. In particular, sw = 0 means that weapon w is already operational at time 0. If sw > 0,

then weapon w does not contribute to the damage inflicted on B until time sw. We consider a

finite time horizon of length T . Without loss of generality, we assume that T is large enough such

that all weapons would become operational before time T , and that the weapons are indexed in

increasing order of the sw’s, that is, 0 ≤ s1 ≤ ... ≤ s|W| ≤ T . Absent any CM, the damage rate

per unit-time inflicted by weapon w on B is dw
0 ≥ 0. Absent any weapon, the damage rate per

unit-time is 0, independent of the available CMs.

To mitigate the effect of R’s weapons, B develops CMs. These CMs are indexed by m ∈ M =

{1, . . . , |M|} and we use the notation CMm to refer to the mth CM. For each w and m, let dw
m ≥ 0

be the damage rate caused by weapon w when only CMm is operational. When a set of CMs is

available, their effect is not cumulative – the damage rate of weapon w is determined by the most

effective CM that is available at that time. While in some cases there may be cumulative effects

of CMs, e.g., when one CM is a detection device and another CM is a neutralization device, we

focus in this paper on a single family of CMs (e.g., interception systems or bomb neutralization

systems) that evolves and improves over time and whose members differ in their capabilities. So,

when a set ∅ 6= M ⊆ M of CMs is available, the damage rate by weapon w, if operational, is

dw
M ≡ minm∈M dw

m; when no CM is available, the damage rate is dw
∅ ≡ dw

0 . We will find it useful to

apply the notation dM ≡ (d1
M , . . . , d

|W|
M ) ∈ R

|W| for M ⊆M, dm ≡ d{m} for m ∈M and d0 ≡ d∅.
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The damage rate caused by a group of weapons is represented by a monotonically increasing

function D : R
|W| → R, which converts damage rates of individual weapons into a total damage

rate. By monotonically increasing function D(x1, . . . , x|W |) we mean that if xw ≥ yw for all w =

1, . . . , |W | then D(x1, . . . , x|W |) ≥ D(y1, . . . , y|W |) and if xw > yw for all w = 1, . . . , |W | then

D(x1, . . . , x|W |) > D(y1, . . . , y|W |). For example, D(·) can be the sum of the individual damage

rates or their maximum. When a weapon w ∈ W is not operational, its individual contribution

to the total damage is set to 0 when evaluating the function D(·). Given a set W ⊆ W, let

IW ∈ {0, 1}|W| be the indicator vector of W , i.e., (IW )w = 1 if w ∈ W and (IW )w = 0 otherwise.

The damage rate caused by the set W of operational weapons when the set of available CMs is M

is then expressed by

dW
M = D(IW ◦ dM ),

where “◦” stands for the Hadamard product. That is, for vectors x, y ∈ R
|W|, the Hadamard

product is x ◦ y ∈ R
|W| with (x ◦ y)w = xwyw. In particular, as each dw

m represents the damage rate

of a certain weapon w in the presence of CMm, we have that D[I{w} ◦ dm] = dw
m. Also, D(0) = 0.

It is assumed that each CM can be developed at any one of several levels of intensity that are

indexed by k ∈ K = {1, . . . , |K|}.2 A higher intensity level of development has two effects: first, the

development time of the CM is shorter and therefore it becomes operational sooner, and second,

the associated cost is higher. We assume that the intensity of developing a CM does not affect its

effectiveness. Intensity 0 indicates no development. For m ∈ M and k ∈ K, let tkm ≥ 0 denote

the time it takes to complete CMm when developed at intensity level k and let ck
m ≥ 0 be the

corresponding cost. As higher intensity levels are associated with shorter development times and

higher costs, we index the intensities so that

t|K|m ≤ t|K|−1
m ≤ ... ≤ t1m and c|K|m ≥ c|K|−1

m ≥ ... ≥ c1
m for each m ∈M.(1)

To avoid degenerate situations, we assume throughout that there are no ties among the dw
m’s, tkm’s

and ck
m’s.

The problem that B faces is to decide which CMs to develop, at what times to start development

and at what intensity levels. The goal is to minimize the cumulative damage over the time horizon

subject to budgetary constraints. The simplest budgetary constraint is a global one where an upper

bound, say C, is prescribed on the total funds that can be spent in developing the CMs. In this

case, the entire budget is available at t = 0. Since there is no reason to defer the development of

2The index sets of the intensities of the different CMs are the same only for notational convenience.
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any CM, the starting time for all the CMs occurs at time t = 0. However, budgetary constraints

may also be temporal where there is an upper bound on expenditure in a certain time period. In

such cases, starting times of the development of the CMs become decision variables.

3 Consistent CMs

In this section we analyze variants of the resource allocation problem described in Section 2 under

a consistency assumption, formally introduced in Subsection 3.2. The problems are formulated as

constrained network optimization models, which facilitate their efficient solution. In Subsection

3.1 we consider the case of a single weapon (which is trivially consistent) under a global budgetary

constraint. In Subsection 3.2 we extend the analysis to the case of multiple consistent weapons and

in Subsection 3.3 we address temporal budgetary constraints.

3.1 Single weapon

Here we assume that there is a single weapon and no temporal budget constraints; in this case, the

convention that d1
m = D[I{1}◦dm] for m ∈M assures that D(·) is the identity, thus, d1

M = D(dM ) =

dM for every M ⊆ M. Henceforth, in this sub-section we suppress the index w = 1. Also, we

rank the CMs by their effectiveness (against the single weapon), that is, d0 > d1 > . . . > d|M| ≥ 0.

As there are no temporal budget constraints, it can be assumed that the development of all CMs

starts at 0. We first assume that the single weapon is already operational at time 0.

The following definitions and notation are used throughout the paper. A CM-development-

policy, henceforth called simply a policy, is a set of CMs along with corresponding develop-

ment intensities. Thus, a policy π is represented by a set of pairs (m,k) where the values

of m are distinct. We order the pairs in π by their first coordinate such that the sequence

(m1, k1), (m2, k2), . . . , (mp, kp) satisfies m1 < m2 < . . . < mp. Clearly, there is no point in de-

veloping a CM that becomes available after a more effective CM is already operational because

such a CM cannot reduce the damage caused by the weapon. Consequently, one can restrict atten-

tion only to policies π that have the following property: if (m,k) and (m′, k′) with m < m′ are in

π, then tkm < tk
′

m′ . We refer to policies that satisfy this condition as effective policies.

A path in a graph is an ordered set of vertices where each consecutive pair is an edge. A path

that starts at vertex a and ends at vertex b is referred to as an (a-b)-path. For a path σ, V (σ) is

the set of vertices in σ, excluding the end vertices, and E(σ) is the set of the corresponding edges.
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Figure 1: A FCDS graph for a single weapon

Effective policies can be represented by paths in the acyclic (directed) graph G′ = (V ′, E′),

where

V ′ ≡ {(m,k) : m ∈M and k ∈ K}(2)

and

E′ ≡ {((m,k), (m′, k′)) : m < m′ and tkm < tk
′

m′}.(3)

Next, we augment the graph G′ with a single origin and a single destination, denoted O and D,

respectively, and with edges (O,D), (O, (m,k)) and ((m,k),D) for every (m,k) ∈ V ′. The resulting

augmented graph is referred to as the Feasible CM Development Schedule (FCDS) graph and its

vertex and edge sets are denoted V and E, respectively. It is convenient to represent the vertices

of a FCDS graph on the interval [0, T ] with vertices of V ′ represented by their corresponding

completion times tkm, O corresponding to 0 and D corresponding to T . In this representation, all

edges have orientation from left to right, assuring that the FCDS graph is acyclic and therefore its

paths are simple. Figure 1 presents a situation where developing CM2 at intensity 2 takes less time

than developing CM1 at intensity 1 and therefore ((1, 1), (2, 2)) is not an edge in the corresponding

FCDS graph. But, if the same intensity level is applied to CM1 and CM2, then CM1 is completed

before CM2 – hence, ((1, 1), (2, 1)) and ((1, 2), (2, 2)) are edges in the FCDS graph.

The discussion above implies that we have a one-to-one correspondence between the set of

effective policies and the set of (O-D)-paths in the FCDS graph. For example, in Figure 1, the

effective policy {(1, 2), (2, 1)} is represented by the path ((O, (1, 2)), ((1, 2), (2, 1)), ((2, 1),D)) but
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there is no path for the non-effective policy {(1, 1), (2, 2)}. We define two transformations denoted

policy(·) and path(·), which convert paths to effective policies and vice versa. These transformations

are inverses of each other, i.e., if σ is a path in a FCDS and π is a policy, then policy (σ) =π if

and only if path(π)= σ; in particular, policy [path(π)]=π and path [policy(σ)]=σ. Although the

definitions of policy(·) and path(·) may seem trivial, they will be particularly useful in Section 4.

The FCDS graph has |M||K| + 2 vertices and at most |K|2
(|M|

2

)

+ 2|M||K| + 1 edges. The

bound on the number of edges is attained when the (time) intervals {[t
|K|
m , t1m] : m ∈ M} are

pairwise disjoint; that is, when the development times of the various CMs are highly variable. The

actual number of edges of the FCDS graph depends on the tkm values and, in general, the graph

may be sparse because of overlaps of the aforementioned time-intervals. That is, the completion

time of some highly effective CMs developed at high intensity levels may be shorter than that of

less effective CMs that are developed at a low intensity level.

A nonempty effective policy π, represented by a path (O, (m1, k1), (m2, k2), . . . , (mp−1,

kp−1), (mp, kp),D) of the FCDS graph, defines a partition of [0, T ] into the time intervals [0, tk1
m1

], [tk1
m1

, tk2
m2

], . . .,

[t
kp−1
mp−1 , t

kp
mp ], [t

kp
mp , T ]. During the time interval [t

kj
mj , t

kj+1
mj+1 ] the available protection against the

weapon is that of CMmj
, that is, the damage rate inflicted by the weapon is dmj

. The total

damage during that period is dmj
(t

kj+1
mj+1 − t

kj
mj ). Similarly, the total damage inflicted during the

interval [0, tk1
m1

] is d0t
k1
m1

and the total damage inflicted during the interval [t
kp
mp , T ] is dmp(T − t

kp
mp).

Thus, by assigning to each edge e of the FCDS graph a damage value de given by

de ≡



































dm(tk
′

m′ − tkm) if e = ((m,k), (m′, k′))

d0(t
k′

m′ − 0) if e = (O, (m′, k′))

dm(T − tkm) if e = ((m,k),D)

d0(T − 0) if e = (O,D),

(4)

the total damage inflicted in the time interval [0, T ] when an effective policy π is implemented is

expressed by

d(π) ≡
∑

e∈E[path(π)]

de.(5)

The next lemma records an opposite triangular inequality that the de’s (the damage values)

satisfy, which we will use later in Section 4.

Lemma 1 Suppose ((m1, k1), (m2, k2)), ((m2, k2), (m3, k3)) ∈ E′. Then ((m1, k1), (m3, k3)) ∈ E′

and

d((m1,k1),(m3,k3)) > d((m1,k1),(m2,k2)) + d((m2,k2),(m3,k3)). 2(6)
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Proof: Trivially, the assumptions imply m1 < m2 < m3 and tk1
m1

< tk2
m2

< tk3
m3

. To verify (6), note

that d((m1,k1),(m3,k3)) = dm1(t
k3
m3
− tk1

m1
) = dm1(t

k3
m3
− tk2

m2
) + dm1(t

k2
m2
− tk1

m1
) > dm2(t

k3
m3
− tk2

m2
) +

dm1(t
k2
m2
− tk1

m1
) = d((m1 ,k1),(m2,k2)) + d((m2,k2),(m3,k3)) (the last inequality follows from dm1 > dm2).

2

The cost ce of an edge in the FCDS graph represents the resources needed for developing the

CM corresponding to the end-vertex of that edge, that is,

ce ≡







ck
m if the end-vertex of e is (m,k)

0 if the end-vertex of e is D.
(7)

The cost of implementing an effective policy π is then expressed by

c(π) ≡
∑

e∈E[path(π)]

ce.(8)

Due to (7), (8) and the one-to-one correspondence of effective policies and paths in the FCDS

graph, the problem of selecting the effective policy that minimizes the damage subject to budget

constraint C reduces to the problem of finding an (O-D)-path in the FCDS graph that minimizes

the d-length (5) subject to the c-length (8) being bounded by C, that is,

min
σ

∑

e∈E(σ)

de(9)

s.t.
∑

e∈σ

ce ≤ C

σ is an (O-D)-path in the FCDS graph.

Formally,

Proposition 1 In the case of a single weapon, the vertices (m,k) on a path that is optimal for (9)

determine an (effective) optimal policy that minimizes the damage that R causes B subject to the

budget constraint.

Unfortunately, the next result shows that (9) is theoretically hard.

Lemma 2 The constrained shortest path problem on a FCDS graph is NP complete.

Proof: See the Appendix.

We next relax the assumption that the (single) weapon is available at time 0 and assume that

it becomes operational at time 0 < s < T . In this case, the total damage inflicted during a time
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interval [a, b] in which only CMm is available is given by dm[max{b, s} −max{a, s}], and the same

formula applies with m = 0 if no CM is available. It follows that the total damage inflicted by the

weapon when an effective policy π is used is the length of the corresponding path where edge-lengths

are given by the modification of (4) obtained by replacing:

tkm → max{tkm, s} for each (m,k) ∈ V

0 → s.
(10)

No change is needed in the representation of the cost associated with developing effective poli-

cies. It follows that the problem still reduces to the constrained shortest path problem of (9) and

Proposition 1 extends to the case where s 6= 0.

3.2 Multiple weapons and consistent CMs

Consider the case where there are multiple weapons threatening B. We say that the CMs are

consistent if the rankings of their effectiveness against all the weapons coincide. Formally, this

means that the CMs can be indexed so that

dw
0 > dw

1 > . . . > dw
|M| for each w ∈ W.(11)

In particular, for any subset M ⊆ M, arg minm∈M dw
m is invariant of w, implying that for every

W ⊆ W

dW
M = D(IW ◦ dM ) = min

m∈M
D(IW ◦ dm).(12)

The consistency property is applicable when the weapons are similar (e.g., various types of roadside

IEDs) and the differences among the CMs are only manifested in the extent of their damage

reduction. Henceforth, in this section, we assume that the CMs are consistent. Also, no temporal

budget constraints are imposed and the development of all CMs starts at 0.

Recall that a policy is a collection of pairs (m,k) with distinct values of m. The definition of

effective policies given in Subsection 3.1 relies on the ranking of the effectiveness of the CMs. Since

the rankings with respect to all weapons are the same, it follows that if CMm is more effective

than CMm′ with respect to one weapon then this effectiveness dominance applies to all weapons.

Consequently, if a policy is effective with respect to one weapon, then it is effective with respect to

all weapons.

Again, we start off with the assumption that all the weapons are operational at time 0. The

damage inflicted by the weapons when an effective policy π is implemented is a monotone increasing

function of the damages inflicted by the individual weapons. Specifically, and similarly to the

9



analysis in Subsection 3.1 (see (4)), the total damage inflicted during the time interval [0, T ] when

an effective policy π is implemented is expressed by (5), where

de ≡



































D(IW ◦ dm)(tk
′

m′ − tkm) if e = ((m,k), (m′, k′))

D(IW ◦ d0)(t
k′

m′ − 0) if e = (O, (m′, k′))

D(IW ◦ dm)(T − tkm) if e = ((m,k),D)

D(IW ◦ d0)T if e = (O,D).

(13)

The expression for the cost c(π) of implementing an effective policy π remains unchanged and is

expressed by (7)-(8). As in Subsection 3.1, it follows that the problem of selecting the best effective

policy reduces to the constrained shortest path problem of (9). Formally,

Proposition 2 In the case of multiple weapons and consistent CMs, the vertices (m,k) on a path

that is optimal for (9) (with the de values given by (13)) determine an optimal effective policy that

minimizes the damage caused by R to B subject to the total budget constraint.

Next assume that some weapons are not operational at time 0 and weapon w becomes available

at time sw ≥ 0. Recall (from Section 2) that the weapons are indexed in increasing order of the

sw’s, i.e., 0 ≤ s1 ≤ ... ≤ s|W| ≤ T ; thus potential sets of operational weapons that B may encounter

are {1, ..., w}, where w ∈ W. Using (12), we next observe that B can continue to restrict attention

to effective policies. We adopt the convention that [a, b] = ∅ if b < a and r+ = max{r, 0} for a real

number r. Now, if an effective policy π is implemented and ((m,k), (m′, k′)) ∈ E[path(π)], then for

m ∈M and w ∈ W, damage rate d
{1,...,w}
m is inflicted during the time interval [tkm, tk

′

m′ ]∩[sw, sw+1] =

[min{tk
′

m′ , sw+1},max{tkm, sw}], whose length is [min{tk
′

m′ , sw+1} − max{tkm, sw}]+; when the edge

emanates from O, tkm is replaced by 0 and when it terminates at D, tk
′

m′ is replaced by T . So, for

e ∈ E and w ∈ W, let

τe|w ≡



































[min{tk
′

m′ , sw+1} −max{tkm, sw}]+ if e = ((m,k), (m′, k′))

[min{tk
′

m′ , sw+1} − sw]+ if e = (O, (m′, k′))

[min{T, sw+1} −max{tkm, sw}]+ if e = ((m,k),D)

[min{T, sw+1} − sw]+ if e = (O,D).

(14)

and

de ≡







∑

w∈W D[I{1,...,w} ◦ dm]τe|w if e emanates from (m,k)
∑

w∈W D[I{1,...,w} ◦ d0]τe|w if e emanates from O.
(15)

The total damage inflicted when an effective policy π is used is then the length of the corresponding

path where edge-lengths are given by (15). No changes are needed in the representation of the cost
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associated with the effective policy π. So, the problem is still reduced to the constrained shortest

path problem of (9) and Proposition 2 extends to the case where the sw’s are not necessarily 0.

3.3 Multiple weapons and consistent CMs with temporal budget constraints

In this subsection we consider the situation examined in Subsection 3.2 with additional constraints

that restrict periodical expenditures. We specify H time-intervals (subsets of [0, T ]) as: I1 =

[T 1, T 1], I2 = [T 2, T 2], . . . , IH = [TH , T H ], where Th < T h and assume that there is a bound Ch

on the expenditure during time interval Ih, for each h = 1, 2, . . . ,H, in addition to the global

budget constraint. The time intervals are not necessarily disjoint. There are two special cases of

particular interest. In the first case, the intervals Ih are disjoint and thus partition [0, T ]. In this

case the periodic budget constraints represent strict cash flow constraints (e.g., typical to the US

government budgeting rules) in which excess funds in one period cannot be utilized in the next

period. Clearly, for the global constraint to be meaningful, the data must satisfy
∑H

h=1 Ch > C.

The second case involves relaxed cash flow constraints where budget overflows are allowed to be

used in future periods. In this case, the time epochs 0 = T1 < T2 < . . . < TH < TH+1 = T are

given and Ih = [0, Th+1] for h = 1, . . . ,H. Here, for the data to be meaningful it must satisfy

C1 < C2 < . . . < CH < C (the constraint corresponding to [0, TH+1] is left out as it is the global

budget constraint).

We assume that costs are incurred continuously and at a uniform rate. Also, the development

of CMs is carried out without planned interruptions (an assumption that is quite reasonable since

in reality, disrupting a project may incur high set-up cost when development is resumed). In

the presence of bounds on periodic expenditures, the time at which the development of each CM

starts becomes a decision variable. To address these additional decision variables, we extend the

definition of “intensity” and refer to “plans” of CM development projects. Each plan consists of a

pair (k, τ), where k is the intensity of developing the CM and τ is the start time. For simplicity of

exposition, we focus on the case where neither the effectiveness of a CM, nor the cost and duration

of developing it are affected by τ ; relaxation of these assumptions is briefly discussed at the end of

this subsection.

As discussed above, when there are no temporal budgetary constraints, there is no reason to

defer the development of any CM and the tkm values represent both the development duration and

the completion time. But, this identity does not hold when the starting times of developing the

CMs are not 0. Specifically, if CMm is developed using plan (k, τ), then its completion time is

11



t
(k,τ)
m ≡ τ + tkm. To avoid irrelevant situations, we assume that t

(k,τ)
m < T for all m,k and τ .

A policy π is now defined as a set of triplets (m,k, τ) with distinct values of m and effective

policies are defined in terms of the t
(k,τ)
m (the completion times) rather than the tkm’s (the duration

times). Consider the modification of the FCDS graph where vertices and edges are defined in terms

of the triplets (m,k, τ) and the completion times t
(k,τ)
m instead of the pairs (m,k) and the duration

times tkm. We refer to the resulting graph as the Timing-Feasible CMs Development Schedule (T-

FCDS) graph. Note that if the development of all CMs can start at any one of q potential time

periods and K is the set of potential intensity levels, then the T-FCDS graph has q|M||K| + 2

vertices and at most (q|K|)2
(|M|

2

)

+ 2q|M||K| + 1 edges. However, unlike the FCDS graph, the

T-FCDS graph may be quite dense in real-world applications. Since an effective policy is such

that for any two nodes (m,k, τ) and (m′, k′, τ ′), m < m′, in the T-FCDS graph we have that

t
(k,τ)
m < t

(k′,τ ′)
m′ , it follows that, as before, there is a one-to-one correspondence between the set of

effective policies and the set of (O-D)-paths in the T-FCDS graph.

Suppose that the development plan of CMm is (k, τ). During the development period [τ, t
(k,τ)
m ]

a cost ĉk
m ≡

ck
m

tkm
per unit time is incurred. The total expenditure on CMm during the time interval

Ih = [T h, T h] is then the length of the (possibly empty) interval Ih∩[τ, t
(k,τ)
m ] times the per unit-time

cost ĉk
m. We note that Ih∩ [τ, t

(k,τ)
m ] = [max{T h, τ},min{T h, t

(k,τ)
m }]. Consequently, the expenditure

during the time interval Ih on CMm is ĉk
m[min{T h, t

(k,τ)
m } −max{T h, τ}]+. For each edge e of the

T-FCDS graph and h = 0, 1, . . . ,H, let

ch
e ≡







ĉk
m[min{T h, t

(k,τ)
m }- max{T h, τ}]+ if e terminates at (m,k, τ)

0 if e terminates at D.
(16)

The total cost associated with effective policy π during the time-interval Ih is then expressed by
∑

e∈E[path(π)] c
h
e and this sum is subject to the corresponding temporal budget constraint Ch.

We next consider the total cost associated with implementing effective policy π. Similarly to

the case of a single weapon presented in Subsection 3.1, here the total cost is expressed by (8),

with the ce’s given by (7), except that (m,k) is replaced by (m,k, τ).

Now, consider the total damage associated with an effective policy π. First, assume that all

weapons are operational at time 0. For each edge e of the T-FCDS graph, let de be given by the

variant of (13) in which k and k′ are replaced by (k, τ) and (k′, τ ′), respectively. The total damage

associated with policy π is then expressed by (5). When weapon w becomes operational at time

sw > 0 , let de be given by (14) and (15), with (k, τ) replacing k.

The above discussion demonstrates that the problem of selecting a policy that minimizes the
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total damage subject to total and temporal budget constraints, reduces to the problem of finding an

(O-D)-path in the T-FCDS graph that minimizes the d-length subject to corresponding constraints

on the c-length and the ch-lengths, that is,

min
σ

∑

e∈E[σ]

de(17)

s.t.
∑

e∈E[σ]

ce ≤ C

∑

e∈E[σ]

ch
e ≤ Ch for h = 1, . . . ,H

σ is an (O-D)-path in the T-FCDS graph.

Formally,

Proposition 3 In the case of multiple weapons and consistent CMs with temporal budget con-

straints, the vertices (m,k, τ) on a path that is optimal for (17) determine an optimal effective

policy that minimizes the damage caused by R to B subject to the total and temporal budget con-

straints.

We note that our model can be easily modified to capture situations where costs and devel-

opment times of CMs depend on the starting times of their development; all that is needed is to

replace the parameters ck
m and tkm by start-time-dependent counterparts ck

m(τ) and tkm(τ), respec-

tively (in which case tk,τ
m = τ + tkm(τ)). Also, allowing effectiveness of the CMs to depend on the

starting times can be captured by replacing m with (m, τ) in the modification of (13).

4 Inconsistent CMs

In this section we relax the consistency assumption, allowing for one CM to be more effective than

another with respect to weapon w while the reverse holds for weapon w′ 6= w. Inconsistency is

present, for example, when the weapons of R are not technologically or operationally similar. We

analyze the inconsistent case, only when the function D(·) is the summation function, in which

case D(IW ◦ dM ) =
∑

w∈W dw
M . We start our analysis under the assumptions that all weapons are

operational at time 0 and there are no temporal budgetary constraints.

Without the consistency assumption, the CMs can no longer be ranked uniformly according to

their effectiveness against the weapons. Still, each weapon has its own total order regarding the

effectiveness of the CMs, which we call w-domination and denote by ≺w; thus, we write m ≺w m′

if dw
m′ < dw

m.
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4.1 Policies and their effective parts

We return to the definition in which a policy π is a set of pairs (m,k) with distinct values of m.

A policy is w-effective if it is effective in the sense of the definition in Subsection 3.1 for weapon

w. Given a policy π and a weapon w ∈ W, the w-effective part of π, denoted πw, is the subset of

π obtained by removing all pairs (m′, k′) ∈ π for which there exists (m,k) ∈ π with m′ ≺w m and

tkm < tk
′

m′ . Since a policy applies at most one intensity level for each CM, the πw’s must satisfy the

following “coupling requirement”:

[(m,k) ∈ πw and (m,k′) ∈ πw′ ]⇒ [k = k′].(18)

The total cost of implementing a policy is expressed by

c(π) ≡
∑

(m,k)∈π

ck
m.(19)

4.2 The multi-FCDS graph

Each weapon w defines an FCDS graph, denoted FCDSw, where < in (3), with respect to the CM

indices, is replaced by ≺w. The sets of vertices and edges of the FCDSw graph are denoted V w and

Ew, respectively. Each V w is a replica of U ≡ {O,D} ∪ {(m,k) : m ∈ M, k ∈ K}; in particular,

the elements of V w are denoted Ow, Dw and (m,k)w. Since the CMs are inconsistent and an

edge ((m,k)w, (m′, k′)w) exists in Ew if and only if m ≺w m′ and tkm < tk
′

m′ , it is possible that

((m,k)w, (m′, k′)w) ∈ Ew but ((m,k)w
′

, (m′, k′)w
′

) /∈ Ew′

for w′ 6= w (this will happen if and

only if tkm < tk
′

m′ , m ≺w m′ and m′ ≺w′ m). As ((m,k)w, (m′, k′)w) ∈ Ew implies that m ≺w m′,

the FCDSw graphs are acyclic and therefore their paths are simple.

In order to refer to the FCDSw graphs jointly, we define the multi-FCDS graph (V,E) whose

vertex- and edge-sets are, respectively, V ≡ ∪w∈WV w and E ≡ ∪w∈WEw. The FCDSw subgraphs

are disjoint components of the multi-FCDS graph, in particular, (Ow-Dw)-paths of the FCDSw

graph are identified with the (Ow-Dw)-paths of the multi-FCDS graph. Figure 2 presents a multi-

FCDS graph for two weapons. As in Figure 1, here too, t21 < t22 < t11 < t12. However, while CM1 is

more effective than CM2 with respect to weapon 1, the reverse is true for weapon 2.

Results in Subsection 3.1 show that there is a one-to-one correspondence of w-effective policies

and (Ow-Dw)-paths of the FCDSw graph, which are the (Ow-Dw)-paths of the multi-FCDS graph.

Following the notation introduced in Subsection 3.1, the (Ow-Dw)-path corresponding to a w-

effective policy πw is denoted path(πw). Figure 3 demonstrates the w-effective parts of a policy.
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O1 (1,2)1 (2,2)1 (1,1)1 (2,1)1 D1

O2 (1,2)2 (2,2)2 (1,1)2 (2,1)2 D2

Figure 2: A multi-FCDS graph for two weapons

Here, π = {(1, 1), (2, 2)}; its 1-effective part is {(1, 1), (2, 2)}(= π), whereas its 2-effective part is

only {(2,2)}.

For each e ∈ E, let

de ≡



































dw
m(tk

′

m′ − tkm) if e = ((m,k)w, (m′, k′)w)

dw
0 tk

′

m′ if e = (Ow, (m′, k′)w)

dw
m(T − tkm) if e = ((m,k)w,Dw)

dw
0 T if e = (Ow,Dw).

(20)

Similar to (5) in Subsection 3.1, we then have that the damage that weapon w ∈ W causes when

policy π is implemented is expressed by d(πw) ≡
∑

e∈E[path(πw)] de. The total damage associated

with the implementation of policy π (caused by all weapons) is then expressed by

d(π) ≡
∑

w∈W

d(πw) =
∑

w∈W

∑

e∈E[path(πw)]

de.(21)

4.3 Configurations

Unlike the one-to-one correspondence of effective policies and paths in Subsections 3.1-3.3, the

relation between policies and paths in the inconsistent case is more complex because the πw’s of a

policy π can differ from each other. To overcome this difficulty, we define a configuration to be a

collection σ = {σw : w ∈ W}, where each σw is an (Ow-Dw)-path in the FCDSw subgraph of the
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policy ( )

1

O1 (1,2)1 (2,2)1 (1,1)1 (2,1)1 D1

O2 (1,2)2 (2,2)2 (1,1)2 (2,1)2 D2

Figure 3: A representation of the w-effective parts of a policy

multi-FCDS graph. Such a configuration is called plausible if it satisfies the “coupling requirement”

[(m,k)w ∈ V (σw) and (m,k′)w
′

∈ V (σw′)]⇒ [k = k′].(22)

Note that (18) implies that the paths corresponding to the w-effective parts of a policy π form a

plausible configuration. On the other hand, given a plausible configuration σ = {σw : w ∈ W},

we define policy(σ) ≡ ∪w∈WV (σw). Finally, we point out that policy π consists of nodes from the

multi-FCDS graph that may be replications of (m,k) pairs e.g., (m,k)w and (m,k)w
′

, w = w′. The

plausibility of σ assures that policy(σ) is indeed a policy. The transformations π → {path(πw) :

w ∈ W} and σ → policy(σ) are not inverses of each other.3

For a policy π we define

π̄ ≡ policy({path(πw) : w ∈ W});(23)

3For example, it is possible to have a policy π which is not w -effective for any w ∈ W – while π determines

a configuration, it is not in the image of policy(·). Also, given a configuration σ and w 6= w′, it is possible for

σw to contain a vertex (m, k) that is not w′-dominated by any vertex of σw′ – this vertex will then appear in

path[policy(σ)]w′ .
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note that π̄ ⊆ π and

c(π) =
∑

(m,k)∈π

ck
m ≥

∑

(m,k)∈π̄

ck
m = c(π̄);(24)

strict inclusion π̄ ⊂ π and strict inequality in (24) are possible when π contains “superfluous”

(m,k)’s. Also, for each path σw of a configuration σ, V (σw) ⊆ [policy(σ)]w and therefore, by the

opposite triangular inequality (Lemma 1),

∑

e∈E(σw)

de ≥
∑

e∈E{path[policy(σ)w]}

de.(25)

Combining (25) with (23) shows that for every configuration σ = {σw : w ∈ W}:

d[policy(σ)] =
∑

w∈W

∑

e∈E{path[policy(σ)w]}

de ≤
∑

w∈W

∑

e∈E(σw)

de.(26)

Figure 4 demonstrates a situation with strict inequality in (26). The figure illustrates a plausible

configuration σ with σ1 = (O1, (1, 1)1,D1) and σ2 = (O2, (2, 2)2,D2) (the edges of these paths are

marked in bold). The policy corresponding to σ is π = {(1, 1), (2, 2)} and the path corresponding

to the 1-effective part of π is (O1, (2, 2, )1, (1, 1)1,D1), with edges (O1, (2, 2, )1) and ((2, 2, )1, (1, 1)1)

(marked by dotted arrows) replacing edge (O1, (1, 1)1) of σ1. Due to the opposite triangular in-

equality, {(1, 1, ), (2, 2)} provides better protection against weapon 1 than {(1, 1)} – the 1-effective

policy corresponding to σ1.

4.4 Network optimization with side constraints

For an edge e and vertex v of the multiple-FCDS, we write e← v if e emanates from v and e→ v

if e terminates at v. Standard results of network modeling imply a one-to-one correspondence

between configurations and vectors x = (xe)e∈E that satisfy:

∑

e←(m,k)w xe =
∑

e→(m,k)w xe for each m ∈M, k ∈ K and w ∈ W
∑

e←Ow xe = 1 =
∑

e→Dw xe for each w ∈ W

xe ∈ {0, 1} for each e ∈ E.

(27)

In particular, if configuration σ = {σw : w ∈ W} corresponds to x satisfying (27), then

∑

w∈W

∑

e∈E(σw)

de =
∑

e∈E

dexe.(28)

Given such a solution x, let y(x) = [y(x)km](m,k)∈U be defined by

y(x)km = max
w

∑

e→(m,k)w

xe for each (m,k) ∈ U ;
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O1 (1,2)1 (2,2)1 (1,1)1 (2,1)1 D1

O2 (1,2)2 (2,2)2 (1,1)2 (2,1)2 D2

policy ( )

Plausible configuration 

Improved plausible configuration

Figure 4: Demonstrating opposite triangular inequality

equivalently, y(x) is the unique solution of

y(x)km ≥
∑

e→(m,k)w xe for each (m,k) ∈ U and w ∈ W

y(x)km ≤
∑

w∈W

∑

e→(m,k)w xe for each (m,k) ∈ U

y(x)km ∈ {0, 1} for each (m,k) ∈ U.

We note that the variable y(x)km gets the value 1 if for any weapon w, CMm is developed at level k

under x when considering the w-subgraph of the multi-FCDS graph, in all other cases y(x)km gets

the value 0.

Consider a configuration σ corresponding to the vector x = (xe)e∈E that satisfies (27). Evi-

dently, σ is plausible if and only if
∑

k∈K y(x)km ≤ 1 for each m ∈ M; an equivalent condition is

that for some vector y = (yk
m)(m,k)∈U , x and y satisfy

yk
m ≥

∑

e→(m,k)w xe for each (m,k) ∈ U and w ∈ W

yk
m ≤

∑

w∈W

∑

e→(m,k)w xe for each (m,k) ∈ U
∑

k∈K yk
m ≤ 1 for each m ∈M

yk
m ∈ {0, 1} for each (m,k) ∈ U.

(29)
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Thus, we have a one-to-one correspondence between the set of plausible configurations and the set

of solutions of (27) and (29). Further, if (x, y) satisfying (27) and (29) corresponds to a plausible

configuration σ, then policy(σ) = {(m,k) : yk
m = 1} and

c[policy(σ)] =
∑

(m,k)∈U

ck
myk

m;(30)

the budget constraint on policy(σ) is then expressed by

∑

(m,k)∈U

ck
myk

m ≤ C.(31)

We next show that the problem of selecting an optimal policy reduces to solving the optimization

problem:

min
x, y

∑

e∈E

dexe(32)

s.t. (x, y) satisfies (27), (29) and (31).

Proposition 4 In a setting that possibly involves inconsistent weapons, let (x∗, y∗) be an optimal

solution of (32) and π∗ ≡ {(m,k) ∈ U : (y∗)km = 1}. Then π∗ is a policy that minimizes the damage

caused by R to B subject to the total budget constraint.

Proof: From the definition of π∗,

c(π∗) =
∑

(m,k)∈U

ck
m(y∗)km ≤ C,(33)

assuring that π∗ satisfies the budget constraint. Next, let OPT be the optimal value of (32).

With σ∗ = {σ∗w : w ∈ W} as the plausible configuration corresponding to (x∗, y∗), we have that

π∗ = policy(σ∗); it then follows from (26) and (28) that

d(π∗) = d[policy(σ∗)] ≤
∑

w∈W

∑

e∈E(σ∗

w)

de =
∑

w∈W

∑

e∈E

dex
∗
e = OPT.(34)

To see that π∗ is optimal consider an arbitrary policy π that satisfies the total budget constraint.

Let (x, y) be the solution of (27) and (29) that corresponds to the plausible configuration σ ≡

{path(πw) : w ∈ W}. Then policy(σ) = π̄ and (30) and (24) imply that

∑

(m,k)∈U

ck
myk

m = c(π̄) ≤ c(π) ≤ C,

assuring that (x, y) satisfies (31). So, (x, y) is feasible for (32) and therefore OPT ≤
∑

e∈E dexe. It

now follows from (34), (28) and (21) that

d(π∗) ≤ OPT ≤
∑

e∈E

dexe =
∑

w∈W

∑

e∈E[path(πw)]

de = d(π). 2
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We next consider the case where weapons are not necessarily operational at time 0 and for each

w ∈ W, weapon w becomes operational at time 0 ≤ sw ≤ T . The situation is handled by adjusting

the definition of the damage coefficients given in (20) (resembling the use of (10) to modify (4) in

Section 3.1). Specifically, for m ∈ M, k ∈ K and w ∈ W, let tk, w
m ≡ max{tkm, sw} and for each

e ∈ E, let

de ≡



































dw
m(tk

′, w
m′ − tk, w

m ) if e = ((m,k)w, (m′, k′)w)

dw
0 (tk

′, w
m′ − sw) if e = (Ow, (m′, k′)w)

dw
m(T − tk, w

m ) if e = ((m,k)w,Dw)

dw
0 (T − sw) if e = (Ow,Dw).

With this adjustment, the total damage inflicted when an effective policy π is used is the sum of

the length of the corresponding paths, the decision problem of B reduces to (32) and Proposition

4 applies. It is also possible to generalize (32) to the case where periodic budget constraints are

imposed (see Subsection 3.3). While the model remains essentially the same, its size increases

significantly. The numerical experiments reported in the next section apply to this more general

case with cash flow budget constraints. That is, the intervals Ih partition [0, T ] with time epochs

0 = T1 < T2 < . . . < TH < TH+1 = T and each interval Ih corresponds to the period [Th, Th+1].

5 Numerical Experiments

In order to examine the applicability and robustness of our constrained network model, we con-

ducted an extensive computational study. In this study, we implemented a model with inconsistent

weapons (see Section 4), multi-period temporal budget constraints (See Subsection 3.3) where the

temporal budget constraints correspond to H disjoint intervals that partition [0, T ], and D(·) as

the summation function (see the last paragraph of Subsection 4.4). A detailed formulation of the

model implemented in our numerical study is given in the Appendix.

The case study consisted of 10 base cases and the generation and solution of 100 instances

for each of the base cases. Each instance represented a small perturbation of the development

completion times of the CMs. The specific model we address is provided in the appendix. All

computational tests were carried out on a laptop computer with a Genuine Intel 1 GHz T2500

processor and 1 GB RAM, running the Red Hat Linux 5 operating system. The code was built

with C++ version 4.1.1 and linked with glibc 2.5.4 and Mosek 5.0. Each one of the 10 base cases

represented 10 types of (inconsistent) weapons (|W| = 10), 10 possible CMs (|M| = 10), 3 levels

of intensity (|K| = 3) and 4 time periods (H = 4). Consequently, each integer programming
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formulation has about 38, 000 variables and 73, 000 constraints and the corresponding multi-FCDS

graph has about 120 vertices (one vertex for each possible completion time t
(k,τ)
m ) and 4, 000 edges.

Although the problems are quite large, the model proved to be computationally efficient; the average

running time of each instance was about 15 minutes (the shortest time was just a few seconds and

the longest time was a little over 4 hours).

5.1 Parameters setting

The CMs were divided into 3 groups according to their completion times: the first group (consisting

of CMs indexed by m = 1, 2, 3) had short development times, the second group (consisting of CMs

indexed by m = 4, 5, 6) had medium development times and the third group (consisting of CMs

indexed by m = 7, 8, 9, 10) had long development times. The time units were measured in months

and each time period was set to be 12 months. So, the first period is [0, 12], the second [12, 24] etc.,

thus T2 = 12, T3 = 24 and T4 = 36. The time horizon, T , was defined to be T4 + maxk,m{t
k
m}.

For simplicity, in our computational testings we limit τ , the optional starting times of developing

the CMs to take the values of 0 = T1, T2, T3 or T4. The completion times, the tkm’s, were sampled

uniformly from the data listed in Table 1.

k 1 2 3
m

1,2,3 4,6,8 10,12,14 16,18,20

4,5,6 12,15,18 21,24,27 30,33,36

7,8,9,10 24,28,32,36 40, 44, 48 52,56,60

Table 1: Values for the tkm’s

For each CM, the development completion times were ordered according to the three intensities

such that t1m > t2m > t3m. The damage rates, the dw
m’s, were sampled from a trimmed Normal

distribution with parameters, µ = 2, σ = 1.5 and truncated by 10 and 0 as upper and lower

bounds, respectively. Recall that in the case of inconsistent CMs, the dw
m’s do not have the same

order of the m’s for all w ∈ W ; still, for each w, dw
0 is the maximum over all dw

m. In addition, sw,

the time weapon w is expected to be operational, was sampled from the Uniform distribution on

the interval [0, 15] and these times were sorted in an ascending order. The development costs ck
m

were sampled from the Uniform distribution on the interval [3, 10] and for each m, the ck
m’s were

ordered to be nondecreasing in k. The budget temporal constraints for all time periods were set to

be identical for all h, so that Ch = Ĉ for all h. Ĉ was calculated as the average costs multiplied
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by twice the average period’s duration δ, that is:

Ĉ =

∑

k∈K

∑

m∈M
ck
m

tkm

|K| · |M|
· 2 · δ,

where δ =
PH

h=1(Th+1−Th)
H

. The budget constraint for the entire time period T , was taken as C =

Ĉ ·H · 0.9.

5.2 Testing robustness

As indicated before, experiment was carried out in order to test the robustness of the solutions to

mild perturbations in the data. In particular, we investigated the sensitivity to small deviations in

the development completion times. First, the 10 base cases were solved. We next generated 100

instances for each base case, with each instance representing a mild perturbation of the completion

times of the base case. The instances were generated by sampling from a trimmed Normal distribu-

tion. Specifically, for the completion time of the mth CM under the kth intensity we used a Normal

distribution (µ, σ) with µ = tkm and σ determined in the following way: for m = 1, 2, 3 : σ = 0.05·14,

for m = 4, 5, 6 : σ = 0.05 · 24 and for m = 7, 8, 9, 10 : σ = 0.05 · 44. The range of the trimmed

Normal distribution was [µ−3σ, µ+3σ]. The completion times were not re-ordered to be monotone

in the development intensity level. The time intervals and the damage costs, which are functions

of the completion times, were re-calculated in the same way as in the base case while the Ci’s were

not recalculated. Each of the 100 instances of each base case was solved separately.

5.3 Measurements

We tested the robustness of the solution, relative to each base case j ∈ {1, . . . , 10} and each

perturbation i ∈ {1, . . . , 100}. For each j and i, let PertOptji be the optimal value (total damage)

of the ith perturbation of the jth base problem, let (Xopt
j , Y opt

j ) be an optimal solution of the jth base

case, and let PertBasisOptji be the total damage incurred if the actual development completion

times are as in the jith instance and (Xopt
j , Y opt

j ) is used. We consider the following measure of

robustness:

ρji =
(PertBasisOptji − PertOptji)

PertBasisOptji
.

Note that (Xopt
j , Y opt

j ) might be an infeasible solution to the ith perturbation of the jth base case.

Infeasibility might be of two types – violation of the topology or violation of the temporal budget

constraints. Topological violation can occur if some of the edges in the solution corresponding to

(Xopt
j , Y opt

j ) do not exist in the graph corresponding to the jith instance. Such violations were

handled by direct calculation of the actual value of the solution of the jith instance. We did not
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calculate the ρji’s for instances that were determined infeasible due to violations of the temporal

budget constraints.

5.4 Numerical results

Table 2 and its histogram in Figure 5 illustrate the frequencies of the ρ values obtained from

792 feasible solutions out of the 1000 runs (in 208 runs there were mild violations in the budget

constraints as indicated in Tables 3 and 4).

Value 0 .004 .009 .013 .018 .022 .027 .031 .036 .040 more

Frequency 456 127 86 39 25 24 16 12 5 2 1

Table 2: Frequency of the ρ values in the original runs

Count Average STD Max Min

792 0.0040 0.0073 0.0446 0

Table 3: ρ values with the original temporal budget constraints

We further examined the effect of the temporal budget violations in the following way. For

each infeasible perturbation, we re-ran the model with an increase of 5% in each violated temporal

budget constraint. The purpose of this exercise was twofold – first, to see whether a relatively

small increase in the budget (5%) is sufficient to restore feasibility and second, to see what effect

will that increase have on the ρ values. Table 4 and its histogram in Figure 6 provide the resultant

ρ values after the 5% increase was implemented where necessary and Table 5 provide the new

summary statistics. Comparing Table 3 to Table 5 we observe that the small increase in budget

was sufficient to eliminate almost all the cases of infeasibility (979 out of the 1000 instances are now

feasible). Thus, we conclude that the violations of the temporal budget constraints were of small

magnitude. Also, we note that the average ρ value remains rather small (0.0135). This exercise

demonstrates the robustness of our model.

Value 0 .004 .009 .013 .018 .022 .027 .031 .036

Frequency 303 135 114 113 68 49 47 39 22

Value .040 .045 .049 .054 .058 .062 .067 .071 more

Frequency 16 10 11 11 8 10 8 6 9

Table 4: ρ values with 5% increase of the violated temporal budgets constraints
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Figure 5: Histogram of the data in Table 2

Count Average STD Max Min

979 0.0135 0.0356 1 0

Table 5: ρ values with 5% percent increase of violated temporal budget constraints

Figure 6: Histogram of the data in Table 4
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6 Concluding Remarks and Extensions

This paper addresses a resource allocation problem faced by a defense agency charged with devel-

oping CMs in a dynamic arms race against an adversary that seeks to cause as much damage as

possible. Such scenarios are becoming more and more relevant in asymmetric wars between gov-

ernment forces and insurgents. The main contribution in this paper is the formulation of tractable

network optimization models that encompass the essential elements of the problem. The models

we develop are deterministic and as such they can be criticized for failing to address the (obvious)

uncertainty that exist in the development times of the CMs. But, the extensive numerical analysis

that is presented in Section 5 demonstrates the robustness of the models whose outcomes remain

stable when there is some “noise” in the data.

The methods we developed apply to a modification of our model where the data consists of

damage rates dW
m for m ∈M and W ⊆ W and the damage rate in the presence of a set of weapons

W and a set of CMs M is DW
M ≡ minm∈M dW

m (in the presence of consistency, (12) shows that the

model we study is an instance of the above). When all weapons are operational at time 0, this

model reduces to the one studied in Subsection 3.1 by looking at W as a single weapon. When the

weapons are not necessarily operational at time 0 and weapon w becomes available at time sw ≥ 0,

with 0 ≤ s1 ≤ . . . ≤ s|W|, we can impose a modified consistency assumption which asserts that

the ranking of the CMs against the sets of the form {1, . . . , w}, w ∈ W, is the same. Under this

assumption, the analysis of Subsection 3.2 applies and the decision problem can be reduced to (9).

In future research we intend to explore dynamic versions of the models developed here. In

particular, we intend to look at multi-stage models with recourse. That is, in each period B will

be able to observe new data that was realized since his previous decisions were made and adjust

the decisions accordingly. We plan to investigate such dynamic models in both a “rolling” and

“folding” horizon frameworks (in the rolling horizon framework, each decision epoch covers a fixed

number of periods in the future while in the folding horizon framework, we advance towards a given

target date and so the decision epochs correspond to an ever-decreasing set of periods).
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Appendix

Proof of Lemma 2

The decision version of the constrained shortest path problem for the FCDS graphs defined in this

paper can be stated as following: Given positive numbers R and C, determine whether there is

an (O-D)-path in the FCDS graph with d-length ≤ R and c-length ≤ C. This decision problem

is clearly in NP since the length of a path in a graph can be determined in polynomial time. We

next prove that this decision problem is NP-complete by showing that any instance of the Partition

Problem, known to be NP-complete (see [6]), can be reduced in polynomial time to a constrained

shortest path problem on a FCDS graph. Our proof modifies arguments of [18].

The data for an instance of the Partition Problem consists of a set of n > 1 positive integers

{a1, a2, . . . , an}. With S =
∑n

i=1 ai, the problem is then to determine whether there exists a subset

I ⊂ N ≡ {1, . . . , n} such that
∑

i∈I ai = S
2 . We next construct an instance of the CM development

problem such that the given instance of the partition problem has a solution if and only if the

corresponding FCDS graph has an (O-D)-path of d-length ≤ S
2 + 1 and c-length ≤ S

2 .

Without loss of generality assume that a1 ≥ a2 ≥ a3 ≥ · · · ≥ an ≥ 1 (the ai’s can be ordered

using O[n(lg n)] comparisons). Also assume that S is even and a1 > 1 (else, the given instance of

the partition problem is trivial), implying that S > 2. Let γ ≡ a1
S

< 1 < S. The CM development

problem that we construct has M = {1, . . . , 2n − 1}, W = {1}, s1 = 0 and K = {1}. Hence, the

dependence of tkm, dk
m and ck

m on k can be suppressed and these are given by

(tm, dm, cm) =























(
∑i−1

u=1 Su + γ, ai+1

S(Si−γ)
, ai) if m=2i− 1 for i ∈ {1, . . . , n − 1}

(
∑i

u=1 Su, ai+1

Si+1 , 0) if m=2i for i ∈ {1, . . . , n – 1}

(
∑n−1

u=1 Su + γ, 0, an) if m=2n− 1

(35)

(where Su stands for the u-power of S). Also, d0 = a1
S

and T =
∑n

u=1 Su.

Clearly, 0 < t1 < . . . t2n−1 < T . Also, for i = 1, . . . , n − 1, d2i−1 = ai+1

S(Si−γ)
> ai+1

Si+1 = d2i

and, as S(Si − γ) − Si = Si(S − 1) − a1 > 0, d2(i−1) = ai

Si > ai+1

S(Si−γ)
= d2i−1. Thus, d0 > d1 >

. . . > d2n−2 > 0 = d2n−1. Following (3), the corresponding FCDS graph is a complete directed

graph, i.e., with O and D associated with 0 and 2n, respectively, its vertex set is V ≡ {0, 1, . . . , 2n}

and its edge set is {(m,m′) ∈ V × V : m < m′}. Further, for each edge e = (m,m′) for which

{ν ∈ V : m < ν < m′} contains an even integer, say ℓ, c(m,m′) = cm′ = 0 + cm′ = c(m,ℓ) + c(ℓ,m′)

and, by Lemma 1, d(m,m′) > d(m,ℓ) + d(ℓ,m′). Consequently, such edges need not be considered in
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exploring the existence of an (O-D)-path of c-length ≤ S
2 and d-length ≤ S

2 +1. Therefore, one can

restrict attention to paths that contain all of the even vertices; such paths are determined by the

set of odd vertices that they contain. An illustration of a FCDS graph without the unnecessary

edges is given in Figure 7.
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Figure 7: The FCDS graph constructed for the proof of Lemma 2

Consider an (O-D)-path σ that contains all even vertices and whose odd vertices consist of

{2i− 1 : i ∈ I} where I ⊆ N . Then c(σ) =
∑

i∈I ai and

d(σ) =
∑

i∈N\I

(
ai

Si
)Si +

∑

i∈I

(
ai

Si
)γ +

∑

i∈I\{n}

[
ai+1

S(Si − γ)
](Si − γ)(36)

= (S −
∑

i∈I

ai) +
∑

i∈I

(
ai

Si
)γ +

∑

i∈I\{n}

(
ai+1

S
).

In particular, c(σ) ≤ S
2 if and only if

∑

i∈I ai ≤
S
2 and d(σ) ≤ S

2 + 1 if and only if

S

2
− 1 +

∑

i∈I

(
ai

Si
)γ +

∑

i∈I\{n}

(
ai+1

S
) ≤

∑

i∈I

ai .(37)

If I = ∅, then d(σ) = S > S
2 + 1, implying that this case can be excluded. With I 6= ∅,

0 <
∑

i∈I

(
ai

Si
)γ +

∑

i∈I\{n}

(
ai+1

S
) ≤ (

∑

i∈N ai

S
)γ + (

∑

i∈N\{1} ai

S
) = γ +

S − a1

S
= 1.(38)

Let ∆ ≡
∑

i∈I(
ai

Si )γ +
∑

i∈I\{n}(
ai+1

S
). As the ai’s and S

2 are integers and 0 < ∆ ≤ 1 (the latter by

(38)), S
2 − 1 + ∆ ≤

∑

i∈I ai if and only if S
2 ≤

∑

i∈I ai, i.e., (37) is equivalent to S
2 ≤

∑

i∈I ai. So,
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c(σ) ≤ S
2 together with d(σ) ≤ S

2 + 1 are equivalent to
∑

i∈I ai = S
2 . Thus, the given instance of

the partition problem was reduced to an instance of a decision problem of a constrained shortest

path in an FCDS graph. 2

The general model used for the numerical experiments

The formulation of the general model we used for the numerical experiments is an extension of

the model presented in Subsection 4.4 according to Subsection 3.3; that is, the time at which the

development of each CM starts is a decision variable. Recall that in this model we refer to plans,

where each plan consists of a pair (k, τ), where k is the intensity of developing the CM and τ is

the start time. We let Γ be a finite set of all possible start times. We assume that neither the

effectiveness of a CM, nor the cost and duration of developing it are affected by τ .

As in Subsection 3.3 a policy π is now defined as a set of triplets (m,k, τ) with distinct values

of m and effective policies are defined in terms of the t
(k,τ)
m (the completion times). Consider

the modification of the multiple-FCDS graph to multiple-T-FCDS graph where vertices and edges

are defined in terms of the triplets (m,k, τ) instead of the pairs (m,k). As in Subsection 3.3,

if the development plan of CMm is (k, τ) then, during the development period [τ, t
(k,τ)
m ] a cost

ĉ
(k,τ)
m ≡ c

(k,τ)
m

t
(k,τ)
m

per unit time is incurred 4. The total expenditure on CMm during the time interval

Ih = [T h, T h] is ĉ
(k,τ)
m [min{T h, t

(k,τ)
m } − max{T h, τ}]+. For each edge e of the multiple-T-FCDS

graph and h = 1, . . . ,H, let

ch
e ≡







ĉ
(k,τ)
m [min{T h, t

(k,τ)
m }- max{T h, τ}]+ if e terminates at (m,k, τ)

0 if e terminates at D.
(39)

The total cost associated with effective policy π during the time-interval Ih is then expressed by
∑

e∈E ch
exe and this sum is subject to the corresponding temporal budget constraint Ch.

Now, consider the total damage associated with an effective policy π. Suppose each weapon w

becomes operational at time sw > 0. For each edge e of the multiple-T-FCDS graph, let de be given

by (15 ), where the dw
e values are given by the variant of (14) in which k is replaced by (k, τ). The

total damage associated with policy π is then expressed by
∑

w∈W

∑

e∈E(σw) de. Our formulation

is given as follows:

4In our experiments, we took t
(k,τ)
m = tk

m and c
(k,τ)
m = ck

m∀τ , i.e., the cost rate ĉ
(k,τ)
m holds during the development

period but its value does not depend on the start time τ .
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∑

e←(m,k,τ)w xe =
∑

e→(m,k,τ)w xe for each m ∈M, k ∈ K, τ ∈ Γ and w ∈ W
∑

e←Ow xe = 1 =
∑

e→Dw xe for each w ∈ W

xe ∈ {0, 1} for each e ∈ E.

(40)

In particular, if configuration σ = {σw : w ∈ W} corresponds to x satisfying (40), then

∑

w∈W

∑

e∈E(σw)

de =
∑

e∈E

dexe.(41)

Given such a solution x, let y(x) = [y(x)
(k,τ)
m ](m,k,τ)∈U be defined by

y(x)(k,τ)
m = max

w

∑

e→(m,k,τ)w

xe for each (m,k, τ) ∈ U

(where U is redefined to accommodate triplets (m,k, τ) ∈ M × K × Γ instead of pairs (m,k) ∈

M×K); equivalently, y(x) is the unique solution of

y(x)
(k,τ)
m ≥

∑

e→(m,k,τ)w xe for each (m,k, τ) ∈ U and w ∈ W, τ ∈ Γ

y(x)
(k,τ)
m ≤

∑

w∈W

∑

e→(m,k,τ)w xe for each (m,k, τ) ∈ U

y(x)
(k,τ)
m ∈ {0, 1} for each (m,k, τ) ∈ U.

(42)

Now, the budget constraints are;

∑

e∈E

ch
exe ≤ Ch for h = 1, . . . ,H(43)

and
∑

(m,k)∈U

c(k,τ)
m y(k,τ)

m ≤ C.(44)

The problem we solved in our numerical experiments is:

min
x, y

∑

e∈E

dexe(45)

s.t. (x, y) satisfies (40), (42)(43), and (44).
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